Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a* }}$ Annette Bayer $^{\text {a }}$ and Odd R. Gautun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway, and
${ }^{\mathbf{b}}$ Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators
Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.035$
$w R$ factor $=0.107$
Data-to-parameter ratio $=10.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Benzyl ($1 R^{*}, 3 S^{*}$)-3,6-dihydro-3-methyl-1 λ^{4},2-thiazine-2-carboxylate 1 -oxide

The title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$, is shown to be the $\left(1 R^{*}, 3 S^{*}\right)$ isomer with a cis arrangement of the $\mathrm{S}=\mathrm{O}$ group and the methyl group on the thiazine ring.

Comment

The title compound, (I), was obtained by a [2+4] cycloaddition of trans-1,3-pentadiene and N-sulfinyl benzylcarbamate (Garigipati et al., 1984) at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction product contained two isomers in the ratio $9: 1$, with different orientations of the $\mathrm{S}=\mathrm{O}$ bond relative to the methyl group (Hansen et al., 2001). The minor isomer is cis $\left(1 R^{*}, 3 S^{*}\right)$, while the $\left(1 R^{*}, 3 R^{*}\right)$ isomer has a trans orientation. The structure of the minor isomer is reported here.

(I)

The title compound crystallizes in the orthorhombic noncentrosymmetric space group $P 2_{1} 2_{1} 2_{1}$. A molecule with the atomic numbering scheme is shown in Fig. 1. The total puckering amplitude parameter Q_{T} is $0.523(2) \AA$ (Cremer \& Pople, 1975; Iulek \& Zukerman-Schpector, 1997). This ring puckering is described as 55% half-boat and 35% half-chair. It should be noted that there is a local pseudo-mirror through S1 and C3, and a local pseudo-twofold axis through the midpoints of the $\mathrm{S} 1-\mathrm{N} 1$ and $\mathrm{C} 2-\mathrm{C} 3$ bonds. The $\mathrm{S}=\mathrm{O}$ bond is in a quasi-axial position, in accordance with several 1,2-thiazine 1-oxides (Boger \& Weinreb, 1987). Least-squares planes through the phenyl ring (atoms $\mathrm{C} 8-\mathrm{C} 13$) and the thiazine ring (atoms C1-C4), show an angle of $9.2(2)^{\circ}$ between the two planes. Atoms S1 and N1 are displaced 0.641 (6) and 0.172 (6) \AA, respectively, on opposite sides of the plane through atoms C1-C4. A plane through atoms N1/C6/O2/O3/ C7/C8 shows a planar zigzag conformation for this part of the molecule (r.m.s. deviation $0.03 \AA$). A selection of bond lengths shows that these are all within the normal range for such bonds (Allen et al., 1987). The $\mathrm{S} 1=\mathrm{O} 1$ bond length is 1.465 (2) \AA. This value is in complete agreement with the values found in the crystal structures of $\left(1 R^{*}, 3 S^{*}\right)$-3,6-di-hydro-3-methyl-2-(toluene-4-sulfonyl)-1 $\lambda^{4}, 2$-thiazine 1 -oxide (Hansen et al., 2001) and ($1 R^{*}, 3 R^{*}, 6 S^{*}$)-3,6-dihydro-3,6-di-
methyl-2-(toluene-4-sulfonyl)-1 $\lambda^{4}, 2$-thiazine 1-oxide (Hansen et al., 2002). The molecules are packed in the crystal through a series of intra- and intermolecular short contacts (Taylor \& Kennard, 1982) (see Table 1).

Experimental

The 1,4-thiazine 1 -oxide was dissolved in warm $\mathrm{Et}_{2} \mathrm{O}$, and cold heptane was added until saturation was reached. The resulting solution was warmed carefully before crystals were grown by vapour diffusion of the solvent at room temperature.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=265.32$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=6.1961$ (14) £
$b=13.613$ (4) \AA
$c=15.842(2) \AA$
$V=1336.2(6) \AA^{3}$
$Z=4$
$D_{x}=1.319 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=9-17^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.60 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer

$\omega-2 \theta$ scans
Absorption correction: ψ scan
[McArdle \& Daly (1999)
(ABSCALC in OSCAIL) and North et al. (1986)]
$T_{\text {min }}=0.869, T_{\text {max }}=0.910$
1734 measured reflections
1695 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.107$
$S=1.04$
1695 reflections
165 parameters
H -atom parameters not refined

$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.064 P)^{2}\right.$
$\quad+0.0882 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$

$$
(\Delta / \sigma)_{\max }=0.006
$$

$$
\Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.22 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.004 (2)
Absolute structure: (Flack, 1983)
Flack parameter $=0.22(14)$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.97	2.39	$3.345(4)$	169
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{O} 3$	0.93	2.40	$2.722(4)$	100
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1$	0.96	2.62	$3.269(4)$	125
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.93	2.59	$3.485(5)$	161
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.98	2.42	$2.736(4)$	98
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2$	0.97	2.58	$2.677(4)$	85
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {iii }}$	0.93	2.53	$3.354(4)$	148

Figure 1
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

One of the authors (AB) thanks the Norwegian Research Council for financial support (grant 122792/410).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Boger, D. L. \& Weinreb, S. W. (1987). Hetero Diels-Alder Methodology in Organic Synthesis, pp. 1-33. San Diego: Academic Press.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1359.
Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Garigipati, R. S., Freyer, A. J., Whittle, R. R. \& Weinreb, S. M. (1984). J. Am. Chem. Soc. 106, 7861-7867.
Hansen, L. Kr., Bayer, A. \& Gautun, O. R. (2001). Acta Cryst. E57, o1109o1110.
Hansen, L. Kr., Bayer, A. \& Gautun, O. R. (2002). Acta Cryst. E58. Submitted.
Iulek, J. \& Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
McArdle, P. \& Higgins, T. (1995). XCAD4. National University of Ireland, Galway, Ireland.
McArdle, P. \& Daly, P. (1999). ABSCALC. PC version. National University of Ireland, Galway, Ireland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

